1.0 Purpose and Scope

This procedure prescribes the Sandia National Laboratories (SNL) Waste Isolation Pilot Plant (WIPP) process for the collection of water-level data from WIPP groundwater monitoring wells. Measurements include depth-to-water (DTW) using a water-level meter and pressure head and barometric pressure using pressure transducers. The objective of this procedure is to describe how water-level and pressure data are collected for use in the hydrology characterization of the WIPP vicinity. In addition, this procedure aims to establish a method for accurate measurement of depth-to-water (DTW) in wells and to describe the field check process for electric sounders (aka electric water level meters).

This Activity/Project Specific Procedure (SP) is intended to direct SNL technical personnel in the procedures needed to obtain high-quality data that meet SNL Quality Assurance (QA) standards. All activities will be documented in the appropriate Scientific Notebook (SN) according to NP 20-2, “Scientific Notebooks”. This SP is in support of activities described in WIPP Test Plans TP 06-01, “Monitoring Water Levels in WIPP Wells” and TP 03-01 “Test Plan for Testing of Wells at the WIPP Site”.

Acronyms and definitions for terms used in this procedure may be found in the Glossary located on the Sandia National Laboratories (SNL) WIPP Online Documents web site.

2.0 Implementation Actions

2.1 Responsibility

The Monitoring Team Lead (MTL) or designee is responsible for implementing the requirements of this procedure.

The Technical Staff are responsible for performing the measurements following the requirements of this procedure, documenting all required information described in this SP, and assuring the latest revision of this document is followed.
If the procedure cannot be worked as written, the user has the responsibility to stop work and resolve all concerns with the MTL/designee prior to proceeding with the work.

2.2 Safety

The activities described in this SP shall conform to SNL Environmental Safety and Health programs (ES&H). All activities described in this SP are also subject to ES&H requirements governed by the WIPP Industrial Safety Program and the WIPP Industrial Hygiene Program when work is conducted within the WIPP site land withdrawal boundary. The operations in this procedure are performed on location and in field conditions. Biological and environmental hazards associated with field work are addressed in the ES&H documents for the hydrology group.

2.3 Equipment

Water-Level Sounder
Depth to water level measurements in wells will be completed using an electric water-level sounder according to the procedure herein.

A typical electric sounder (or water level meter) consists of a graduated plastic-coated tape with two wire leads, a DTW probe at the downhole end of the tape, batteries, and a signal light and buzzer mounted on a surface reel. When the DTW probe enters the water, the water closes the electric circuit on the probe, activating the surface light and buzzer.

Water level meters must be field checked at least annually to verify they are within measurement tolerance of +/- 0.20 inches per 100 feet of tape. If the water level meter cannot meet this tolerance, it shall be removed from service in the WIPP program. Do not use a water level meter to measure DTWs if it has been more than one year since the meter has undergone a field check. The field check process is described in Section 2.4.

Pressure-Head Gauges
Pressure-head measurements will be collected on a continuous basis, for both hydraulic tests and long-term monitoring purposes using pressure transducer gauges (PTs). PTs typically consist of a temperature sensor, a pressure transducer, and a programmable data logger housed in a sealed instrument body. The data logger is accessed from ground surface via a communication cable, allowing the data logger to be programmed and accumulated data to be downloaded to a laptop or handheld computer/personal digital assistant (PDA). Prior to the Monitoring Run (MR), the laptop or PDA’s clock shall be synced with the SNL Hydrology Group’s data storage server/PC clock, which is always set to Arizona Standard Time and does not incorporate daylight savings time.

PTs monitor the temperature of the water [in degrees Celsius (C) or Fahrenheit (F)] and the pressure-head response to changes in water level [in pounds per square inch (psi) or kilopascals kPa]. Pressure transducers have maximum pressure ranges from 15 to 500 psi and are absolute and the units should be recorded as pounds per square inch absolute (psia). Absolute pressure transducers (psia) do not compensate for atmospheric pressure (~13.100 psi in the vicinity of WIPP); thus barometric pressure must be manually subtracted to determine true pressure-head measurements.

Barometric Pressure Gauges
Barometric pressure measurements are typically collected on a continuous basis, using a PT that is able to log data or will be coupled with a data logger. These data are collected for the primary purpose of correcting pressure-head data for fluctuations in barometric pressure.
Pressure Transducer (PT) Cables
The data logger is typically housed in the PT body and is accessed from ground surface via a communication cable, which allows the data logger to be programmed and accumulated data to be downloaded. Communication cables are also used to suspend a PT in a well at a fixed depth. In order to constrain the depth at which a PT is suspended, the cables must be measured in a consistent manner and under tension. Cables should be measured using a graduated tape and marked at 100 foot (ft) increments until the last 100 ft of cable, which shall be marked at 25 ft increments.

Note: Almost every cable is longer than the actual reported length and any excess (“pigtail”) will be noted as part of the total cable length (i.e., connector to connector), which will be annotated at the top of each cable. The communication cable serial number, manufacturer length, and measured total length will be documented in the appropriate SN.

2.4 Depth to Water Level Measurement Procedure

Setup
- Unlock the well head cover. Caution: When unlocking and opening the well head, be aware of biting/stinging insects.
- Secure the meter so the sensor can be easily deployed into the well casing without causing personal injury or damage to the measuring tape or other equipment.
- Turn the volume control knob to the ON position and then test the probe by pressing the small black test button located near the red light. The meter should beep, use the volume (i.e., sensitivity) control knob to adjust the level of sound emission so that it is easy to hear.
- The DTW should be read directly in feet off of the graduated plastic tape referenced against either the top of the casing (BTOC), below the top of environmental casing (BTEC), or below the top of tubing (BTOT), depending on type of well completion.

Measurement
- Review previous water-level measurements at the location to establish a general understanding of where to expect the water. Release the brake and lower the probe into the well until the meter beeps and the light indicates that water is reached. The meter will indicate this by simultaneously emitting a tone and lighting up the light as the electric circuit is completed (when the probe touches water).
- When the beep is emitted raise the tape upward a small amount until the beeping stops and then lower the probe slowly down until the meter beeps. Note: This should be done more than once to insure an accurate reading. If the probe becomes coated with residue in the water (i.e. complete submergence of the probe), beeping may not cease. In this case, it might be necessary to adjust the sensitivity level of the probe or shake the tape and probe up and down until the beeping stops. If the beeping does not stop, rewind the tape, rinse the probe with fresh water and dry it with a clean towel or canned air. Determine DTW to the nearest 1/100th of a foot by placing the graduated tape on the north side of casing/tubing and reading the tape directly where it meets the top edge of the casing/tubing. Record the DTW and time of the measurement in the appropriate SN.
- Rewind the tape onto the reel taking care to keep the tape untangled and clean. If necessary, use a clean rag to wipe any residue on the tape while rewinding. Rinse the probe with fresh water and turn the probe power off. Secure and relock the well head before departing the location.

Water-Level Sounder Field Check
- The field check shall be completed at least annually or as determined by the MTL. The purpose of the field check is to compare the water level meter graduated tape with a known distance (i.e. distance between certified marks) which will quantify the accuracy of the tape.
The certified distance will be established using a Leica laser meter, certified by the Sandia Primary Standards laboratory or a qualified supplier. Measurement readings are recorded onto a spreadsheet.

Field Check Setup
- Establish two fixed reference points approximately 100 feet (+/- 0.5 feet) apart. This distance will be established and measured using the Leica laser distance meter. The exact distance between the two measurement points as displayed on the Leica will be noted on the Field Check spreadsheet. In this procedure, one point will be referred to as the 0 ft mark and the other point will be referred to as the 100 ft mark.
- Place the tensioning device at approximately the -1 to -5 ft position (i.e. 1 to 5 ft before the 0 ft survey mark) and the tape is threaded through the wheel assembly as shown in the diagram of Appendix A.
- Place the meter probe at the 100 ft mark, aligning the meter’s measurement pin directly over the mark as shown in Appendix B.
- Make sure the tape is not twisted or slack then attach the 11-pound weight from the tape at the tensioning device. This method will apply a constant tension to the tape for all measurements. Refer to the diagram in Appendix C for additional detail.
- Take a measurement reading at the 0 ft survey mark and record. Move the tape slightly (without removing the tensioning weight), reposition the measurement pin directly over the 100 ft survey mark again, and take another measurement reading, at the 0 ft survey mark, and record.
- Repeat the above procedure in 100 ft increments, placing the hundred-foot marks of the tape on the 100 ft survey mark and reading the tape value at the 0 ft survey mark until the last 100 ft segment of the tape is reached.

For the last segment of tape to be measured the tape must be reversed, because the tape reel is too close to the tensioning rig. The last segment of tape is measured by placing the final mark of the tape (1000 ft) on the 100 ft survey mark and reading the tape value at the 0 ft survey mark, in duplicate. Because the tape is reversed for this measurement, the resultant reading will be the opposite of the other measurements (i.e. instead of reading 1000.001 ft the reading would be 899.999 ft). In order to correct for this, the last measurement is reversed, so that it corresponds to the previous measurements, using the following formula:

\[
\text{Field Check Measured Value (FCMV) = Starting Value of the Measured Range} - \text{Actual Reading} + \text{Ending Value of the Measured Range}
\]

Example: \(FCMV = (900.000 \text{ ft} - 899.999 \text{ ft}) + 1000.000 \text{ ft} = 1000.001. \)

To demonstrate the reproducibility of the field check measurements, repeat the measurements on the segment (0 to 100 ft), in duplicate, and record onto the spreadsheet.

At the conclusion of the Field Check, use the Leica laser distance meter to again verify the distance between the 0 and 100 ft marks. Record the measured distance onto the Field Check spreadsheet. If the distance between the initial Leica reading recorded and this closing Leica reading varies by more than +/- .05 inches, the Field Check will be repeated.

Field Check Documentation
After the field check is successfully completed and the results are reviewed by the MTL a calibration sticker will be placed on the meter. Submit the spreadsheet that documents the Field Check results to the SNL WIPP Records Center per NP 17-1 “Records”.
2.5 Pressure Transducer (PT) Maintenance

Per manufacturer and SNL recommendations, PT gauges shall be calibrated annually or as directed by the MTL or PI. PTs are typically battery operated and must be monitored for battery capacity (volt (V) or percent (%)) to prevent data loss. There are typically two types of batteries utilized in PT gauges including:

- Replaceable alkaline or lithium batteries that last approximately one year under normal SNL monitoring conditions. At the time of PT installation in the well, batteries should be at _3.5_ V capacity, and while the PT is operational in the well, batteries should be changed before capacity drops below 3.1 _V_.

- Non-replaceable lithium batteries, which can last up to five years under normal monitoring conditions (though this may be shorter due to the usage variation discussed above). Lithium batteries cannot typically be replaced; therefore, an external battery pack may be attached either directly to the gauge or to the top of the communication cable. The battery pack shall be attached when the internal lithium battery capacity of the gauge reads between approximately 40-50%, or as directed by the PI or MTL. External battery packs shall be replaced when capacity reaches approximately 10%, in order to preserve the internal battery as an emergency backup.

2.6 Procedure for Monitoring Tests

As part of the SNL WIPP mission, a groundwater monitoring program has been established to acquire detailed records of changes in water-level and pressure head in the WIPP vicinity. TP 06-01, "Monitoring Water Levels in WIPP Wells" outlines the strategies and philosophy of this program. As part of the monitoring program, certain QA records must be produced. To this end, all quality-affecting data collected under this SP will need to be documented in the appropriate SN, including serial numbers for measuring and testing equipment (per NP 20-2, Scientific Notebooks). Examples of the information that should be included in data entries are provided as Appendix D and Appendix E.

Pressure Transducer (PT) Installation and Test Setup

PTs shall be installed and monitoring tests setup as follows:

- Collect a DTW measurement. Select a communication cable of appropriate length to reach the desired depth, typically the middle of the geologic formation being observed and within tolerance of the PT. To avoid over-pressuring a PT, the gauges are rated to allow a limited number of feet of water above the gauge and this needs to be taken into account when choosing and installing PTs.

- Perform an operational check to determine if the PT is functioning properly, by establishing communication with the PT, checking to see if the battery is within acceptable levels, and synchronizing the internal gauge clock with the PDA or laptop device.

- Perform a surface check unless one has been done within the last month. A surface check consists of taking pressure and temperature measurements of ambient conditions, and the surface pressure on ambient (psia) PTs should read within 13 ± 0.50 psia. If the pressure readings exceed the guidelines, the MTL should be contacted for a decision to be made as to whether or not a different gauge should be used. The surface check guideline is intended to consider the effects that ambient barometric pressure variations can have on background measurements.

- Denote the installation depth (ideally mid-formation of the unit to be monitored) on the cable to the nearest 1/10th of a foot, including all hardware attached to the cable. The PT depth should be noted as feet BTOC/BTEC/BTOT, as applicable. Secure the cable to the wellhead and lower/install the PT and cable to the desired depth. Take care as the PT nears the air-water interface in order to avoid a “waterhammer” effect, which can damage the transducer.
• For routine monitoring purposes, once the PT is at depth, a monitoring test shall be setup using a PDA/laptop. The test setup will be determined by the MTL based on direction from the PI. The actual test setup will be clearly documented in the scientific notebook. The test should be scheduled to begin at the nearest hour (unless this will occur within the next 15 minutes, in which case, the test should be started on the next hour).
• For testing purposes, a hydraulic test shall be setup per the PI/MTL’s direction, which will include the type, trigger value, trigger threshold value, scan rate, and default sample frequency.
• After the PT has been installed, for new installations or when verification of the depth is needed, the PT will be moved approximately 2 feet up while the pressure reading is monitored to ensure that the pressure is changing when the PT is moved. This check shall be completed to verify that the PT is not obstructed downhole or sitting on the bottom of the well and is actually at the intended depth.
• Lock and secure the wellhead after all well activities described in this SP are completed, except for under certain circumstances which will be documented in the SN.

Routine Monitoring and Downloads
As part of the SNL WIPP hydrology monitoring activities, MRs will be conducted typically monthly, during which data will be downloaded from the PTs (in conjunction with a DTW measurement), and maintenance will be performed as necessary. The reasons for the MR are twofold, to check the status of the PT (i.e. battery capacity and operability) and to have the most up-to-date pressure data available.

There are multiple reasons to end a PT test including: the need to move a PT either within the well or to a new well, well test monitoring setup, calibration interval is due, PT failure, O&M contractor well activities, etc. If the PDA/laptop cannot establish communication with the PT, the following steps must be completed and documented in the appropriate SN:

- Remove the PT from the well and attempt to establish connection with the PT. Whenever a PT is removed from a well and the gauge is operable, a surface check shall be conducted and documented in the SN.
- If communication cannot be established, an as found calibration shall be attempted.
- If at any time communication is re-established with the PT, it must be further evaluated prior to re-installation.

2.7 Procedure for Pressure Transducer (PT) Use During Hydraulic Tests

Hydraulic tests are overseen by the PI in collaboration with the Well Test Lead (WTL) and/or the MTL. The PI determines PT installation and setup parameters for the test well. Details of these protocols are outlined in TP 03-01, “Test Plan for Testing of Wells at the WIPP Site”. All quality-affecting data generated during hydraulic testing activities must be documented in the appropriate SN.

Hydraulic Test PT Setup and Initiation
PT setup and initiation for hydraulic tests can be quite different from monitoring tests. Because of this, the PI/WTL/MTL will determine how PTs are installed and set up. Ideally, the following information associated with PT setup and installation will be documented (at the discretion of the PI/WTL/MTL):

- A DTW shall be taken prior to installation of any equipment (i.e. pump) used for the hydraulic test.
- Conduct an operational check and surface check (if necessary) and install PTs, either with or after the pump is installed.
• Setup the hydraulic tests per the PI/WTL/MTL’s direction regarding type, trigger value, trigger threshold value, scan rate, and default sample frequency.

Hydraulic tests will be terminated at the discretion of the PI/WTL/MTL. In most instances, a monitoring test will be set up soon after the hydraulic test is complete. However, the test parameters will be determined by the PI/WTL/MTL. If a PT were to fail to communicate with the PDA/laptop, the steps outlined in Section Routine Monitoring and Downloads must be completed.

2.8 Procedure for Barometric Pressure Tests

As part of the SNL WIPP hydraulic testing and groundwater monitoring activities, barometric pressure fluctuations in the WIPP vicinity are measured. A description of the importance of these data is provided in TP 03-01, “Test Plan for Testing of Wells at the WIPP Site”. All quality-affecting information generated by the following barometric monitoring test procedure must be documented in the appropriate SN. Barometric tests shall be setup and maintained as follows:

• PTs shall be installed near ground level and in such a way as to avoid direct sunlight.
• Conduct an operational check and conduct a surface check if necessary (>1 month since last surface check).
• Barometric monitoring tests are typically defined as linear tests with a scan rate of 15 minutes (unless altered by the PI/MTL/FTL).
• Barometric monitoring tests will be downloaded as part of the MR, which should include checking the battery capacity.

2.9 Pressure Transducer (PT) Data Storage

All data (monitoring, testing, barometric) downloaded from PTs will be uploaded from the laptop/PDA to a directory on the SNL Hydrology Group’s data storage server/PC. This directory will in turn be backed up onto the SNL Hydrology Group’s directory on the SNL SRN.

3.0 Records

The following records, generated through implementation of this procedure, shall be prepared and submitted to the WIPP Records Center in accordance with NP 17-1, "Records":

QA Record
• Scientific Notebooks
• Field Check Spreadsheet (printed copy)

4.0 Appendices

Appendix A: Diagram of Field Check Setup Indicating the Positioning of the Tape Tensioning Device and Survey Markers
Appendix B: Example Diagram of a Typical DTW Probe
Appendix C: Diagram of the Tape Tensioning Device
Appendix D: Examples of Data Entries Appropriate for PT Removal and Installation Activities
Appendix E: Examples of Data Entries Appropriate for PT Data Download Activities
Appendix A
Diagram of Field Check Setup Indicating the Positioning of the Tape Tensioning Device and Survey Markers

Tensioning device must be placed between the -1 to -5 ft position.
Appendix B
Example Diagram of a Typical DTW Probe

Note: The red X indicates where the tip of the measurement pin should be held to the survey marker. The survey mark may need to be relocated depending on the configuration of the probe.
Appendix C
Diagram of the Tape Tensioning Device

Sand bags or hold down weights placed here to secure base.
Appendix D

Examples of Data Entries Appropriate for PT Removal and Installation Activities

<table>
<thead>
<tr>
<th>Document Inserted into Scientific Notebook</th>
<th>Well I.D. _____________________Culebra/Magenta/Other (circle one)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start pulling Level Troll SN ___________________</td>
<td>Complete pulling ___________________</td>
</tr>
<tr>
<td>Surface Check</td>
<td>Press.:psia Temp.°F:</td>
</tr>
<tr>
<td>Cables SN ___________________</td>
<td>Cable SN ___________________</td>
</tr>
<tr>
<td>Surface Check Level Troll SN__________________</td>
<td>Cal due date _________________________</td>
</tr>
<tr>
<td>Begin install</td>
<td>Complete install, at depth FT.</td>
</tr>
<tr>
<td>Sync Level Troll to PDA clock</td>
<td>Pressure changed when Troll was moved ~ 2 Ft.</td>
</tr>
<tr>
<td>Test Name: SN ___________________________________</td>
<td></td>
</tr>
<tr>
<td>Type: Event</td>
<td>Trigger: Pressure</td>
</tr>
<tr>
<td>Default: _______________________________</td>
<td>Schedule start:___________</td>
</tr>
<tr>
<td>At depth check</td>
<td>Press.:_______________psia</td>
</tr>
<tr>
<td>Well Locked and Secured</td>
<td>Initial ___________</td>
</tr>
</tbody>
</table>
Appendix E
Examples of Data Entries Appropriate for PT Data Download Activities

Document Inserted into Scientific Notebook ____________________ on page _______

Well I.D. _______________ Culebra/Magenta (circle one)	Battery (%) _______________		
DTW (ft.) _______________	BTOC	BTEC	BTOT (circle one)
(time)			
Extracted Data File			
(time)			

Last Point Collected ____________ Temp.°F __________ Press. __________ psia
(date) (time)

Well Locked and Secured Initial __________ Date___________

Well I.D. _______________ Label added to Notebook SSW—__________ on page ___________

| DTW: _______________ FT. BTOC | Battery (%) _______________ |
| (time) | | |

Stop Test / Extracted File SN
(time) yes no

Last Point Collected ____________ Temp.°F __________ Press. __________ psia
(date) (time)

Well Locked and Secured Initial __________ Date___________
This work of authorship was prepared as an account of work sponsored by an agency of the United States Government. Accordingly, the United States Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so for United States Government purposes. Neither the National Technology and Engineering Solutions of Sandia, LLC., the United States Government, nor any agency thereof, nor any of their employees makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately-owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the National Technology and Engineering Solutions of Sandia, LLC., the United States Government, or any agency thereof. The views and opinions expressed herein do not necessarily state or reflect those of the National Technology and Engineering Solutions of Sandia, LLC., the United States Government or any agency thereof.

Parties are allowed to download copies at no cost for internal use within your organization only provided that any copies made are true and accurate. Copies must include a statement acknowledging Sandia's authorship of the subject matter.