IMPORTANT NOTICE: The current official version of this document is available via the Sandia National Laboratories WIPP Online Documents web site. A printed copy of this document may not be the version currently in effect.

SANDIA NATIONAL LABORATORIES
WASTE ISOLATION PILOT PLANT

Analysis Plan for Hydraulic-Test Interpretations

AP-070, Revision 3

Task Number 1.4.2.3

Effective Date: October 6, 2020

Author: Dale O. Bowman II, 8882
Repository Performance Department

Technical Review: Janelle Hicks, 8882
Repository Performance Department

QA Review: Brenda L. Kirkes, 8880
Carlsbad Programs Group

Management Review: Antonio Triventi, 8882
Repository Performance Department
TABLE OF CONTENTS

1. INTRODUCTION AND OBJECTIVES ... 3
2. APPROACH ... 3
3. SOFTWARE LIST ... 4
4. TASKS ... 4
5. SPECIAL CONSIDERATIONS ... 5
6. APPLICABLE PROCEDURES ... 5
7. REFERENCES ... 5
1. INTRODUCTION AND OBJECTIVES

This Analysis Plan directs the interpretation of hydraulic tests performed in formations at the Waste Isolation Pilot Plant (WIPP) site. Hydraulic tests are performed in support of WIPP compliance activities to provide data needed for generation and defense of conceptual models, and for numerical modeling of groundwater flow and transport. Interpretations of the hydraulic tests will serve as input to models used for compliance decisions related to the performance of the WIPP disposal system.

The objective of hydraulic-test interpretations is to obtain estimates of all hydraulic properties that can be interpreted from the specific test being interpreted. While some hydraulic properties are germane to specific hydraulic tests, the following hydraulic property estimates are required when pertinent and applicable:

- Permeability-thickness product (transmissivity) (all tests);
- Storativity (only tests with observation wells);
- Fracture-matrix storativity ratio (only tests exhibiting double-porosity responses);
- Interporosity flow coefficient (only tests exhibiting double-porosity responses);
- Anisotropy (only tests with three or more observation wells);
- Flow dimension (all tests); and/or
- Formation pore pressure (all tests).

Error/uncertainty in the estimation of these parameters will be assessed directly by the analysis code used (see Section 3).

2. APPROACH

The analytical approach to be followed is well established and has been used on the WIPP project for many years (Beauheim and Roberts, 2004, and Roberts et al., 1999, Chapter 6). The computer code to be used for analysis is nSIGHTS (n-dimensional Statistical Inverse Graphical Hydraulic Test Simulator) v. 2.41A or 2.50 (Roberts, 2003). The input to this code consists of some or all of the following:

- transient pressure data;
- transient flow-rate data;
- well radius;
- tubing string radius;
- tested thickness;
- fluid density;
- fluid thermal expansion coefficient;
- test-zone compressibility; and/or
- distance from source well.

3. SOFTWARE LIST

The computer code to be used for the analysis of hydraulic-test data is nSIGHTS v. 2.41A or 2.50 (qualified under NP 19-1 Software Requirements) or later versions (when qualified). The use and qualification of utility codes for such things as barometric and earth-tide corrections to test data will be documented in analysis reports prepared and reviewed for those activities in accordance with NP 9-1 Analyses. Commercial off-the-shelf spreadsheet programs, such as Microsoft Excel, and graphing programs, such as Grapher, may also be used for data manipulation and plotting, again in accordance with NP 9-1.

4. TASKS

The tasks to be performed in connection with a hydraulic-test analysis are the following:
- Assemble data on well completion and location;
- Assemble data acquired during field testing relevant to the performance of the test;
- Assemble qualified data files, qualified as defined by review for correctness, to be used in interpretation;
- Manipulate data files to put in the proper input format for the analysis code(s);
- Plot data in nSIGHTS to evaluate data quality and develop preliminary model conceptualization;
• Using nSIGHTS utilities, perform any data corrections needed prior to analysis (e.g., removal of barometric and earth-tidal effects, compensation for packer-pressure or temperature fluctuations, etc.);
• Analyze data with nSIGHTS code to provide “baseline” fit to data;
• Perform perturbation analysis, using a minimum of 500 optimizations, to define structure of fitting parameter space and provide confidence that global minimum has been found—repeat as necessary;
• Produce hardcopy plots of final simulations;
• Make copies of input files and final output files; and
• Prepare analysis package, obtain necessary reviews, and submit to records center.

Analysis reports documenting the analysis process and results will be prepared, reviewed, and submitted to the WIPP Records Center by the responsible analyst at the completion of each set of related analyses.

5. SPECIAL CONSIDERATIONS

All hydraulic-test analysts must have general training in the theory of hydraulic-test analysis, and specific training in the use of nSIGHTS.

6. APPLICABLE PROCEDURES

All applicable WIPP quality-assurance procedures will be followed for these analyses. Training of personnel will be done in accordance with the requirements of NP 2-1 *Qualification and Training*. Analyses will be performed and documented in accordance with the requirements of NP 9-1 *Analyses*. All software used will meet the requirements of NP 19-1 *Software Requirements*. Data generated using procured and off-the-shelf software will be verified in accordance with the requirements of NP 9-1. The analyses will be reviewed following NP 6-1 *Document Review Process*.

7. REFERENCES

7–10 June 2004 (Paper H005). Houten, the Netherlands: European Association of Geoscientists and Engineers. ERMS# 552034.

This work of authorship was prepared as an account of work sponsored by an agency of the United States Government. Accordingly, the United States Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so for United States Government purposes. Neither the National Technology and Engineering Solutions of Sandia, LLC., the United States Government, nor any agency thereof, nor any of their employees makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately-owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the National Technology and Engineering Solutions of Sandia, LLC., the United States Government, or any agency thereof. The views and opinions expressed herein do not necessarily state or reflect those of the National Technology and Engineering Solutions of Sandia, LLC., the United States Government or any agency thereof.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA-0003525.

Parties are allowed to download copies at no cost for internal use within your organization only provided that any copies made are true and accurate. Copies must include a statement acknowledging Sandia’s authorship of the subject matter.