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1 Introduction and Objectives 
 
1.1 Introduction 
 
This analysis plan guides the addition of thermodynamic parameters to a current quality assured 
EQ3/6 thermodynamic database with the ultimate creation of a self-consistent new QA EQ3/6 
thermodynamic database.  The motivation behind creation of this database is to include systems 
that were posed of interest and recommended by Environmental Protection Agency (EPA) after 
the submittal of CRA-2014.  This analysis plan, as per NP 9-1, is considered a compliance decision 
analysis. 
 
1.2 Objectives 
 
The objective of this analysis plan is to create a single verified self-consistent QA EQ3/6 
thermodynamic database which will include parameters outlined in Appendix GEOCHEM 2019, 
by using the currently verified QA EQ3/6 thermodynamic database, DATA0.FMT.R2, also known 
as DATA0.FM1 (Xiong, 2011c) as the starting database.  The updated QA database resulting from 
this analysis plan will be called DATA0.FM4. 
 

2 Approach 
 
This AP outlines the procedure for the creation of a single QA EQ3/6 thermodynamic database, 
which will be built on a previous QA database, DATA0.FM1.  The general procedure in the 
creation of this QA database includes the compilation and testing of an interim database, and final 
QA approval of the database. 
 
Testing of the preliminary database will consist of running Python minimization scripts 
(EQ3CodeModule.py) that can be coupled with calculations in the EQ3/6 Version 8.0a (Kirchner, 
2012).  In this minimization routine, the target thermodynamic parameter can be adjusted to 
minimize the difference, or to achieve reasonable differences, between the experimental value and 
predicted value. This minimization routine also can be used to minimize the saturation index by 
adjusting the target thermodynamic parameters.  In this way, the target thermodynamic parameter 
can be derived. In the User’s manual writer by Kirchner (2012), there are several examples 
showing how to obtain the optimized solubility constant by using the script.  The python script 
coupled with the EQ3/6 Version 8.0a is to be used for evaluation of solubility data to derive Pitzer 
parameters as well as equilibrium constants. This minimization script has been utilized in previous 
CRAs and is suitable for achieving objectives in this Analysis Plan.   
 
Running the python scripts from specific CRA-2019 Appendix Geochem equilibrium constants 
for reactions, Pitzer interaction coefficients or ions implemented in the WIPP chemical conditions 
process model will be to insure consistency of the derived parameters.  If discrepancies are 
encountered during testing, then the parameters may need to be reevaluated and the pertinent 
documentation revised.  Running of Python scripts will be for those parameters that were fit 
specifically for the creation of the new thermodynamic database, DATA0.FM4.  There will not be 
running scripts for all the literature values provided in the following sections. 
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For CRA-2019, the DOE has reviewed the WIPP models for EDTA, citrate, and oxalate.  
Additional solubility-limiting phases are being added, one for each of the organic ligands, EDTA 
[Ca2EDTA•7H2O(s)], citrate (earlandite), and oxalate (glushinskite).   

In addition, new to CRA-2019 is the addition of aqueous Pb2+ and Fe2+ to the WIPP Chemical 
Conditions Process Model.  The DOE is limiting the models for both Pb2+ and Fe2+ to the inorganic 
systems. Reactions for lead include four lead-bearing solids: PbO(litharge), PbCO3(cerussite), 
Pb(SO4)(s), and NaPb2(CO3)2(OH)(abellaite).The aqueous species included are: Pb2+, PbCl+, 
PbCl2(aq), PbCl3

-, PbCO3(aq), Pb(CO3)2
2-, Pb(CO3)Cl-, PbOH+, Pb(OH)2(aq), Pb(SO4)(aq), and 

Pb(CO3)(OH)–. There is evidence (Xiong 2014a; Xiong 2014b) that Pb2+ may form species with 
EDTA, citrate, and oxalate and that formation of lead-bearing solids with EDTA, citrate, and 
oxalate may occur (Xiong 2014a; Xiong 2014b).  However, development of parameters to support 
addition of those reactions is still underway and they will not be included in CRA-2019. Addition 
of interactions between Pb2+ and Fe2+ and the organic ligands, EDTA, citrate, and oxalate, will be 
considered for inclusion in CRA-2024.  The iron reactions include eight iron-bearing solids: 
Fe(OH)2(s) (Ferrous iron hydroxide), Fe2Cl(OH)3(s) (hibbingite), FeCO3(s) (siderite), 
Fe2CO3(OH)2(s) (chukanovite). It is assumed that these solids are in their crystalline form.  The 
aqueous species included are: FeOH+, Fe(OH)2(aq), Fe(OH)3

-, Fe(OH)4
2-, FeCO3(aq), Fe(CO3)2

2-.  

There is evidence (Jang 2017) that Fe2+ may form species such as FeOxalate(aq), Fe(Oxalate)2
2-, 

FeEDTA2, FeHEDTA-, FeOHEDTA3-, Fe(OH)2EDTA4-, FeOHCitrate2-, FeCitrate-, and 
FeHCitrate(aq).  However, development of parameters to support addition of those reactions is 
still underway and will not be included in CRA-2019. 

A listing of the proposed equilibrium constants and Pitzer interaction coefficients from CRA-2019 
Appendix Geochem to be included DATA0.FM4 may be found in the following sections. 
 
2.1 Thermodynamic Data and Pitzer Parameters 
 
The thermodynamic database including additional data for CRA-2019 interactions with organic 
ligands, magnesium oxide, lead, and iron are planning to be changed.  Those changes are described 
in this section.  The database that will be used to incorporate those changes is DATA0.FM4. 
 
In the last two recertification cycles, the presence of a tetraborate species in WIPP brines has 
become of interest because of its potential effect on AN(III) solubility.  Discussions between the 
DOE and the EPA have focused on the possible formation of a tetraborate complex with +III 
actinides. The conclusion of those discussions is that while addition of a tetraborate complex may 
be considered for inclusion in CRA-2024, the complex will not be included in CRA-2019.  

The borate model remains unchanged for CRA-2019. No additional borate-containing solids or 
aqueous species have been added to the WIPP Chemical Conditions Process Model since the CCA.  
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2.1.1 Thermodynamic and Pitzer Data for Organic Ligand and Solids 
 
The changes that are being proposed are the addition of solubility-limiting phases for EDTA, 
citrate, and oxalate.  Without solubility-limiting phases, these ligands are present in the aqueous 
phase to the extent that the inventory allows.   
 
For CRA-2019, the DOE has reviewed the WIPP thermodynamic and Pitzer data for EDTA, 
citrate, and oxalate.  For consistency with the NEA database project, the DOE decided to align the 
WIPP Process models and parameters accordingly and therefore values for EDTA, citrate and 
oxalate from Hummel et al. (2005) are used.  The values from Hummel et al. (2005) for EDTA4-, 
HEDTA3-, H2EDTA2-, H3EDTA-, NaEDTA3- , MgHEDTA are shown in Table 1. 
 
Solubility-limiting phases are being added, one for each of the organic ligands, EDTA 
[Ca2EDTA•7H2O(s)], citrate (earlandite), and oxalate (glushinskite).    Then, using project-specific 
solubility data for the three solids, Ca2EDTA•7H2O (s), earlandite, and glushinskite, the DOE 
derives appropriate Pitzer interaction coefficients for the EDTA, citrate, and oxalate systems.   

A new aqueous species, NaEDTA3- , is being added for CRA-2019. However, Hummel et al. 
(2005) did not provide Pitzer coefficients while Felmy and Mason (2003) did provide Pitzer 
coefficients.  Because the log K values from both sources are similar, the DOE decided to use 
interaction coefficients from Felmy and Mason (2003) at the same time they are using the log K 
value from Hummel et al. (2005).  The Pitzer interaction coefficient values are shown in Table 2.   
Because the interaction parameters for K+ and EDTA- were originally set using an analogy to Na+, 
that analogy is being extended by changing the K+ interaction parameters to match the Na+ 
interaction parameters here.   
 
The species, MgHEDTA-, does not exist in DATA0.FM1 and will be added to DATA0.FM4 with 
a formation log K value of -4.5 from Hummel et al. (2005). 
 
Table 1. Equilibrium Constants for Reactions with EDTA Implemented in the WIPP 

Chemical Conditions Process Model for CRA-2019 

Reaction log K Source 

Solid Dissolution Reactions     

Ca2EDTA•7H2O(s) ↔ 2Ca2+ + EDTA4– + 7H2O -16.81 Domski (2018a) 

Aqueous Dissociation Reactions   

H4EDTA(aq) ↔ EDTA4– + 4H+ -23.42 Hummel et al. (2005) 

H3EDTA– ↔ EDTA4– + 3H+ -21.19 Hummel et al. (2005) 

H2EDTA2– ↔ EDTA4– + 2H+ -18.04 Hummel et al. (2005) 

HEDTA3– ↔ EDTA4– + H+ -11.24 Hummel et al. (2005) 

NaEDTA3– ↔ Na+ + EDTA4–  -2.80 Hummel et al. (2005) 

MgEDTA2– ↔ Mg2+ + EDTA4–  -10.90 Hummel et al. (2005) 



AP-183 
Revision 1 

Page 6 of 20 
 

Reaction log K Source 

MgHEDTA1- ↔ H+ + MgEDTA2–  -4.50 Hummel et al.  (2005) 

CaEDTA2– ↔ Ca2+ + EDTA4–  -12.69 Hummel et al.  (2005) 

CaHEDTA1-↔ H+ + CaEDTA2–  -3.54 Hummel et al.  (2005) 

 

Table 2. Pitzer Interaction Coefficients (Cation-Anion Interactions) for Ions Containing 
EDTA Implemented in the WIPP Chemical Conditions Process Model 

I   j α1/α2
A β(0) β(1) Cφ Source 

Cation-Anion Interactions     
 

EDTA4- Na+ 2.0/12.0 1.10 15.6 0.001 Felmy and Mason (2003) 

EDTA4- K+ 2.0/12.0 1.10 15.6 0.001 Felmy and Mason (2003) 

HEDTA3- Na+ 2.0/12.0 0.546 5.22 -0.048 Giambalvo (2002) 

HEDTA3- K+ 2.0/12.0 0.546 5.22 -0.048 Giambalvo (2002) 

H2EDTA2- Na+ 2.0/12.0 -0.126 1.74 0.054  Giambalvo (2002) 

H2EDTA2- K+ 2.0/12.0 -0.126 1.74 0.054  Giambalvo (2002) 

H3EDTA- Na+ 2.0/12.0 -0.235 0.29 0.059 Giambalvo (2002) 

H3EDTA- K+ 2.0/12.0 -0.235 0.29 0.059 Giambalvo (2002) 

NaEDTA3- Na+ 2.0/12.0 0.59 5.39 0 Felmy and Mason (2003) 

All values for β(2) are 0.  

Table 3 contains the thermodynamic parameters for Ca2EDTA•7H2O(s) and CaEDTA2-, and the 
Pitzer parameters for the Na+―CaEDTA2- ion pair that will be included in DATA0.FM4. 
 

Table 3. The Pitzer Model for the Na+―Mg2+―Ca2+―Cl–―EDTA4–―H2O System at 25oC 
with Ca2EDTA•7H2O(s) From Domski (2018a) and Domski (2018b). 

Equilibrium Constants at infinite dilution for Dissolution Reaction of Ca2EDTA•7H2O(s) 
and Formation Reaction of CaEDTA2– 
Reactions log K  
Ca2EDTA•7H2O(s) ↔ 2Ca2+ + EDTA4– + 7H2O(l) -16.81 
Ca2+ + EDTA4– ↔ CaEDTA2– 12.69 
Pitzer ParametersA 
Species, i Species, j   C 
Na+ CaEDTA2– 0.185 2.405 0 
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There are no changes recommended for Na+ and citrate.  There are no dissolution or dissociation 
reactions for Na+ and citrate species or solids in DATA0.FM1, and there are no new data that 
indicate species or solids should be added. DATA0.FM1 contains Pitzer interaction coefficients 
for Na+ and H2Citrate-, Na+ and HCitrate2-, and Na+ and Citrate3-, which will not change for CRA-
2019.  The Pitzer interaction coefficients are based on Mizera et al. (1999). 

The DOE is planning the addition of earlandite, Ca3(Citrate)2•4H2O(s) to the EQ3/6 database for 
CRA-2019.  Earlandite would act as a solubility-limiting phase for citrate in the baseline solubility 
calculations. Hummel et al. (2005) gives values for log K for the reactions shown in Table 4. The 
Pitzer interaction coefficients for ions containing citrate ligands implemented in the WIPP 
Chemical Conditions Process Model are shown in Table 5.  

 
Table 4. Equilibrium Constants for Reactions with Citrate Implemented in the WIPP 

Chemical Conditions Process Model for CRA-2019 

Reaction log K Source 

Solid Dissociation Reactions   

Ca3(Citrate)2•4H2O(s)↔3Ca+ + 2Citrate3- + 4H2O -17.90 Hummel et al. (2005)A 

Aqueous Dissociation Reactions   

H3Citrate (aq) ↔ H2Citrate– + H+ -3.13 Hummel et al. (2005) 

H3Citrate (aq) ↔ Citrate3– + 3H+ -14.27 Hummel et al. (2005) 

H2Citrate–↔ HCitrate2– + H+ -4.78 Hummel et al. (2005) 

H2Citrate–↔ Citrate3– + 2H+ -11.14 Hummel et al. (2005) 

HCitrate2–↔ Citrate3– + H+ -6.36 Hummel et al. (2005) 

MgHCitrate (aq) ↔ Mg2+ + HCitrate2- -2.60 Hummel et al. (2005) 

MgHCitrate (aq) ↔ Mg2+ + H+ + Citrate3- -8.96 Hummel et al. (2005) 

Mg(H2Citrate)+ ↔ Mg2+ + H2Citrate- -1.31 Hummel et al. (2005) 

Mg(H2Citrate)+ ↔ Mg2+ + 2H+ + Citrate3- -12.45 Hummel et al. (2005) 

MgCitrate–↔ Mg2+ + Citrate3– -4.81 Hummel et al. (2005) 

CaCitrate- ↔ Ca2+ + Citrate3– -4.80 Hummel et al. (2005) 

CaHCitrate(aq) ↔ Ca2+ + H+ + Citrate3– -9.28 Hummel et al. (2005) 

CaHCitrate(aq) = Ca2+ + HCitrate2– -2.92 Hummel et al. (2005) 

Ca(H2Citrate) + = Ca2+ + H2Citrate1– -1.53 Hummel et al. (2005) 

Ca(H2Citrate) + ↔ Ca2+ + 2H+ + Citrate3- -12.67 Hummel et al. (2005) 
AValue from Hummel et al. (2005) converted to the EQ3/6 basis species reaction by adding a value of -11.14 from 
H2Citrate- value. 
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Table 5. Pitzer Interaction Coefficients (Cation-Anion Interactions) for Ions Containing 
Citrate Implemented in the WIPP Chemical Conditions Process Model 

I j α1/α2
A β(0) β(1) Cφ Source 

Cation-Anion Interactions     
 

Citrate3- Na+ 2.0/12.0 0.0887 5.22 0.047 Giambalvo (2002) 

Citrate3- K+ 2.0/12.0 0.0887 5.22 0.047 Giambalvo (2002) 

H2Citrate- Na+ 2.0/12.0 -0.127 0.29 0.013 Giambalvo (2002) 

H2Citrate- K+ 2.0/12.0 -0.130 0.29 0.013 Giambalvo (2002) 

HCitrate2- Na+ 2.0/12.0 -0.0989 1.74 0.027 Giambalvo (2002) 

HCitrate2- K+ 2.0/12.0 -0.0989 1.74 0.027 Giambalvo (2002) 

CaCitrate- Na+ 2.0/12.0 0.174 0.29 -0.069 Giambalvo (2002)  

CaCitrate- K+ 2.0/12.0 0.174 0.29 -0.069 Giambalvo (2002)  

MgCitrate- Na+ 2.0/12.0 0.174 0.29 -0.069 Giambalvo (2002) 

MgCitrate- K+ 2.0/12.0 0.174 0.29 -0.069 Giambalvo (2002)  

All values for β(2) are 0.  

The DOE is not updating the H-oxalic and Na-oxalic acid parameters at this time. Table 6 gives 
log K values from DATA0.FM1.Tables 7 and 8 shows the Pitzer interaction parameters. 
DATA0.FM1 contains Pitzer interaction coefficients for Oxalate2- and Na+. The DOE will 
continue to use the values from DATA0.FM1 for CRA-2019. 

The DOE is planning the addition of glushinskite [MgOxalate•2H2O(s)], a solid phase containing 
oxalate, to the EQ3/6 database for CRA-2019.  Glushinskite would act as an additional solubility-
limiting phase for oxalate in the baseline solubility calculations. 
 

Table 6 shows log K values for solids and species containing Mg2+ and Oxalate.  Table 7 shows 
Pitzer interaction coefficients for Na+ and (Oxalate)2

2– for CRA-2019. Table 8 shows Pitzer 
interaction coefficients for the aqueous species MgOxalate(aq).  One Pitzer coefficient was added 
to the parameters to complete the fit to the data.  The coefficients added are for the interaction 
between MgOxalate(aq) and Na+ and Mg2+.  Interactions between these two ions are not included 
in DATA0.FM1. 

The DOE proposed the addition of whewellite for CRA-2004.  The value shown in Table 6 from 
Xiong (2004) will be used in CRA-2019.  Hummel et al. (2005) provides log k values for two other 
solids that could form from Ca2+ and Oxalate2-.  These two solids will not be added to the WIPP 
model for CRA-2019 because they are not expected to exist in the WIPP environment. The value 
of 0.0189 for λna for CaOxalate(aq) and Cl- interactions that was included in DATA0.FM1 will 
remain for CRA-2019. 
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Table 6. Equilibrium Constants for Reactions with Oxalate Implemented in the WIPP 
Chemical Conditions Process Model for CRA-2019 

Reaction log K Source 

Solid Dissolution Reactions    

CaOxalate•H2O(s) (whewellite)↔ Ca2+ + Oxalate2– + H2O -8.75 Xiong (2004) 

MgOxalate•2H2O(s) (glushinskite) ↔ Mg2+ + Oxalate2- + 
2H2O 

-6.41 AP-182 (2019) 

H2Oxalate•2H2O(s) ↔ Oxalate2– + 2H+ + 2H2O -5.66 Giambalvo (2002) 

NaHOxalate•H2O(s) ↔ Na+ + H+ + Oxalate2– +H2O -6.06 Giambalvo (2002) 

Na2Oxalate(s) ↔ 2Na+ + Oxalate2– -2.41 Giambalvo (2002) 

Aqueous Dissociation Reactions   

CaOxalate(aq) ↔ Ca2+ + Oxalate2– -3.79 Giambalvo (2002)  

MgOxalate(aq) ↔ Mg2+ + Oxalate2–  -3.79 Giambalvo (2002)  

Mg(Oxalate)2
2- ↔ Mg2+ + 2Oxalate2- -5.24 Jang and Kim (2016) 

H2Oxalate(aq) ↔ Oxalate2– + 2H+ -5.65 Giambalvo (2002) 

HOxalate–↔ Oxalate2– + H+ -4.26 Giambalvo (2002) 

   
 

 
Table 7. Pitzer Interaction Coefficients (Cation-Anion Interactions) for Ions Containing 

Oxalate Implemented in the WIPP Chemical Conditions Process Model for CRA-
2019 

I j α1/α2 β(0) β(1) Cφ Source 

Cation-Anion Interactions 

Oxalate2- Na+ 2.0/12.0 -0.2176 1.74 0.122 Giambalvo (2002) 

Oxalate2- K+ 2.0/12.0 -0.218 1.74 0.122 Giambalvo (2002f) 

Mg(Oxalate)2
2- Na+ 1.4/12.0 0.07 0 0 AP-182 (2019) 

HOxalate- Na+ 2.0/12.0 -0.245 0.29 0.068 Giambalvo (2002) 

HOxalate- K+ 2.0/12.0 -0.245 0.29 0.068 Giambalvo (2002) 

All values for β(2) are 0.  
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Table 8. Pitzer Interaction Coefficients (Neutral-Cation; Neutral-Anion Interactions) for 
Ions Containing Organic Ligands Implemented in the WIPP Chemical Conditions 
Process Model for CRA-2019 

i j λnc’ or λna’ Source 

Neutral-Cation Interactions  

MgOxalate(aq)  Na+ 0.08 AP-182 (2019) 

MgOxalate(aq) Mg2+ -0.20 AP-182 (2019) 

Neutral-Anion Interactions 

CaOxalate(aq)  Cl- 0.0189 Giambalvo (2002) 

MgOxalate(aq)  Cl- 0.0189 Giambalvo (2002) 

 
2.1.2 Interactions with MgO Solids 
 
Recently, an error in transcription was discovered when the data from Robie and Hemingway 
(1973) was compared to that in DATA0.FM1.  The error is in the FMT thermodynamic database 
fmt_050405.chemdat (Xiong et al. 2005) where the μ0/RT value attributed to Robie and 
Hemingway (1973) does not match what was reported by Robie and Hemingway (1973).  

Using either the μ0/RT value derived from Robie and Hemingway (1973; -2365.82) or the standard 
free energy of formation (-5,864.74 kJ/mol), the log K values for the reaction are: 62.77 and 31.49, 
respectively. 

Per a September 2018 Technical Exchange meeting (2018), DOE agreed to use EPA’s 
recommended corrected log K value of 31.49 from Robie and Hemingway (1973) in the CRA-
2019. 
 

Table 9. Equilibrium Constants for Dissolution Reactions for MgO Solids Implemented in 
the WIPP Chemical Conditions Process Model for CRA-2019 

Reaction log K Source 

Solid Dissolution Reactions 

Mg5(CO3)4(OH)2•4H2O(hydromagnesite5424) + 6H+ ↔ 5Mg2+ + 
4HCO3

– + 6H2O 
31.49 

Robie and 
Hemingway (1973) 
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2.1.3 Interactions with Lead Systems 
 
Lead is being added to the WIPP Chemical Conditions Process Model for CRA-2019.  A summary 
of the parameters and their log K values are presented in Table 10.  The lead system was initially 
parameterized primarily with data gathered by the DOE as part of their geochemistry research 
program for the WIPP (Xiong 2013, 2014a, 2014b, 2015a, 2015b).  The DOE decided to use a lead 
model based on a critical review of the chemical speciation of Pb2+ with inorganic ligands 
published as an International Union of Pure and Applied Chemists (IUPAC) technical document 
(Powell et al. 2009) for CRA-2019.   
 
Experiments for cerussite [PbCO3(s)] solubility in NaHCO3 + NaCl and NaHCO3 + Na2CO3 
solutions were conducted by the DOE geochemistry research program for the WIPP (Xiong 2015).  
During examination of the solid phase at the end of the experiments, abellaite, NaPb2(CO3)2(OH), 
was identified.  Therefore, the data are for a dual salt system of cerussite and abellaite.  The 
experimental protocols for the data collected for this work are described in Kirkes et al.  (2014).  
The recent discovery that cerussite transformed to abellaite in some of Xiong’s (2015) experiments 
has led the DOE to use log K values from Powell et al. (2009) until abellaite can be added to the 
model. The values to be used in CRA-2019 are shown in Table 11. Xiong (2015a, 2015b) 
experiments pertaining to PbCO3(aq), Pb(CO3)2

2–, Pb(CO3)Cl– , Pb(OH)2(aq) and Pb(OH)3
–  

systems require further characterization, therefore equilibrium constants for these dissociation 
systems and PbCl2 and Pb( OH)2 were found in the literature.  
 
Recent XRD analysis of the solids from Xiong (2015b) indicates the presence of multiple solid 
phases in addition to α-PbO. This has led the DOE to use log K values from Powell et al. (2009). 
 
Once the solid phases are identified, the DOE will revisit the experiments to determine if additional 
parameters are required. The values to be used in CRA-2019 are shown in Table 10. 
 
Powell et al. (2009) contains information about lead reactions with sulfate that are germane to the 
WIPP.  That information is shown in Table 10.  There will be no Pitzer interaction coefficients 
derived for the lead systems. 
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Table 10. Equilibrium Constants for Reactions with Lead Implemented in the WIPP 
Chemical Conditions Process Model for CRA-2019 

Reaction log K Source 

Solid Dissolution Reactions    

α-PbO(litharge) + 2H+ ↔ Pb2+ + H2O(l) 12.62 Powell et al. (2009) 

PbCO3(cerussite) + H+ ↔ Pb2+ + HCO3
- -2.84 Powell et al. (2009) 

Pb2CO3Cl2(s) + H+↔ 2Pb2+ + HCO3
1– + 2Cl- 0.41 Powell et al. (2009) 

PbSO4(s) + H+ ↔Pb2+ + HSO4
1- -5.82 Powell et al. (2009) 

Aqueous Dissociation Reactions   

PbCl+↔ Pb2+ + Cl-   -1.50 Powell et al. (2009) 

PbCl2(aq)↔ Pb2+ + 2Cl-  -2.10  Powell et al. (2009) 

PbCl3
-↔ Pb2+ + 3Cl-  -2.00 Powell et al. (2009) 

PbOH+ + H+↔ Pb2+ + H2O 7.46 Powell et al. (2009) 

Pb(OH)2(aq) + 2H+↔ Pb2+ +2H2O(l) 16.94  Powell et al. (2009) 

Pb(CO3)(OH)– + 2H+ ↔ Pb2+ + HCO3
1- + H2O(l) 13.44 Powell et al. (2009) 

Pb(CO3)Cl-+ H+↔ Pb2+ + HCO3
- + Cl- 3.87  Powell et al. (2009) 

PbCO3(aq) + H+↔ Pb2+ + HCO3
-  3.89 Powell et al. (2009) 

Pb(CO3)2
2-+ 2H+↔ Pb2+ + 2HCO3

- 10.55  Powell et al. (2009) 

PbSO4(aq) + H+↔ Pb2+ + HSO4
1-      - 0.74 Powell et al. (2009) 

 
2.1.4 Interactions with Iron Systems 
 
The model developed for Fe(OH)2(s) solubility is shown in Table 12. The first four reactions 
considered are: 1) dissolution of Fe(OH)2(s), 2) dissociation of Fe(OH)2(aq), 3) dissociation of 
FeOH+, and 4) dissociation of Fe(OH)3

-.  A fifth reaction for dissociation of Fe(OH)4
2- was 

examined but rejected because speciation diagrams [using log K values from Baes and Mesmer 
(1976)] indicate that Fe(OH)4

2- is not likely to exist under WIPP conditions.  These four reactions 
will be added to DATA0.FM4 for CRA-2019. Experiments covered two basic iron systems, 1) Fe-
Na-Cl-H2O, and 2) Fe-Na-Cl-CO3-H2O, which are the systems that will be parameterized for CRA-
2019. 
 
The DOE has two data sets collected since 2007.  The first data set was published in Nemer et al. 
(2011).  The second data set was entered into the WIPP records center as part of Jang (2016).  Kim 
et al. (2017) combined the two data sets and published a model for aqueous Fe2Cl(OH)3(s) 
solubility.  The data shown in Table 11 is from references named Kim et al. (2017). 
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Kim et al. (2017) adopted a log K value for siderite dissolution of 0.12 from Stumm and Morgan 
(1996).   
 
Kim et al. (2017) performed a data fit to obtain values for β(0) and β(1) for the Na+ and Fe(CO3)2

2- 
interaction of -0.23 and 6.26, respectively. The values are shown in Table 12.   
 
Kim et al. (2017) surveyed a number of references to choose a value for ΔGf

0 for dissolution of 
chukanovite. Ultimately, Kim et al. (2017) chose to use an average value of 1171.7 kJ/mol from a 
number of sources.  They then calculated a log K value for dissolution of 12.32. The values are 
shown in Table 11. 
 
Table 11. Equilibrium Constants for Reactions with Iron Implemented in the WIPP 

Chemical Conditions Process Model for CRA-2019 

Reaction log K Source 

Solid Dissolution Reactions   

Fe(OH)2(s) + 2H+ (ferrous hydroxide) ↔ Fe2+ + 2H2O 12.89 Kim et al. (2017) 

Fe2Cl(OH)3(s) + 3H+ (hibbingite) ↔ 2Fe2+ + Cl- + 3H2O 17.08 Kim et al.  (2017) 

FeCO3(s) + H+ (siderite) ↔ Fe2+ + HCO3
-  -0.12 

Stumm and Morgan 
(1996) 

Fe2CO3(OH)2(s) + 3H+ (chukanovite) ↔ 2Fe2+ + HCO3
- + 

2H2O 
12.32 Kim et al. (2017) 

Aqueous Dissociation Reactions   

FeOH+ + H+ ↔ Fe2+ + H2O  9.31 Shock et al. (1997) 

Fe(OH)2(aq) + 2H+ ↔ Fe2+ + 2H2O 20.82 
Stumm and Morgan 

(1996) 

Fe(OH)3
- + 3H+ ↔ Fe2+ + 3H2O 31.0 Baes and Mesmer (1976) 

FeCO3(aq) + H+ ↔ Fe2+ + HCO3
- 4.83 Bruno et al. (1992) 

Fe(CO3)2
2- + 2H+↔ Fe2+ + 2HCO3

1- 13.89 Kim et al.  (2017) 
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Table 12. Pitzer Interaction Coefficients (Cation-Anion Interactions) for Ions Containing 
Iron Implemented in the WIPP Chemical Conditions Process Model for CRA-
2019 

I j α1/α2
A β(0) β(1) β(2) Cφ Source 

Fe2+ Cl- 2.0/12.0 0.373 1.135 0 -0.022 Moog et al. (2004) 

        

Na+ Fe(CO3)2
-2 2.0/12.0 -0.23 6.26 0 0 Kim et al.  (2017) 

        

 

Table 13. Pitzer Interaction Coefficients (Cation-Cation Interactions) for Ions Containing 
Iron Implemented in the WIPP Chemical Conditions Process Model 

i j θcc’ or θaa’   Source 

Na+ Fe2+ 0.110 Moog et al. (2004) 

Mg2+ Fe2+ 0.145 Moog et al. (2004) 

K+ Fe2+ 0.0274 Moog et al. (2004) 

Ca2+ Fe2+ 0.0811 Moog et al. (2004) 

 

Table 14. Pitzer Interaction Coefficients (Cation-Cation-Anion Interactions) for Ions 
Containing Iron Implemented in the WIPP Chemical Conditions Process Model 

I j k ψijk Source 

Fe+2 Na+ Cl- -0.0161 Moog et al. (2004) 

Fe+2 K+ Cl- -0.0252 Moog et al. (2004) 

Fe+2 Mg+2 Cl- -0.0299 Moog et al. (2004) 

Fe+2 Ca+2 Cl- -0.0160 Moog et al. (2004) 

 
 
2.2 Software List 
 
The software to be used is EQ3/6 Version 8.0a (Wolery and Jarek, 2003; Wolery, 2008; Wolery 
et al., 2010; Xiong, 2011b), and DATA0.FM1 (Xiong, 2011a).  In addition, off the shelf software 
such as Microsoft Excel, and the Excel macro GetEQData_v101f.xls will be used to extract data 
from the EQ3/6 output files, and the open source text editor Notepad++ may be used to edit the 
preliminary and final databases. 
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2.3 Acceptance Criteria 
 
During the testing phases of the preliminary and interim databases comparisons between fitted 
parameters and EQ3/6 output will be made in Microsoft Excel.  Parameters and simulation using 
the final interim database will be considered acceptable if they agree to within 10%.  If the percent 
difference exceeds 10%, a new value for lambda will be sought in the interim database.  Also, if 
the 10% criteria is exceeded it will be refitted or the discrepancy will be documented for 
acceptability.  If the percent difference is less than or equal to 10%, the value is acceptable.  In 
addition, it should be pointed out that comparisons between fitted values will only be from Domski 
and Xiong sources.   The literature source values will be directly put into the datablocks of the 
EQ3/6 database and there will be no comparison. 
 

3 Tasks 
 
There are two tasks under this AP, which will result in the creation and documentation of a QA 
thermodynamic database.  The subtasks for this task includes the creation of a preliminary 
database, testing of the preliminary database, evaluation of the test results, evaluation of errors and 
re-testing as necessary, and issuance of the final QA database(s).  
 
There are three major steps that go into the task of creating DATA0.FM4 in this AP: (1) 
computation of solubility constants from experimental data; (2) computation of formation 
constants from experimental data; and (3) derivation of Pitzer parameters from experimental data. 
 
The final QA databases will be documented in an analysis report which will accompany the 
issuance of the QA database, DATA0.FM4. 
 
Table 15 lists the task, database name, and completion date for AP-183. 
 

Table 15. Task list and completion date 
Task Database Completion Date 
1 DATA0.FM4 02/28/19 
2 Analysis Report for 

Creation of 
DATA0.FM4 

02/28/19 

 
Paul Domski will be the primary analyst performing the tasks under this AP. A memo that states 
the completion of DATA0.FM1 will be issued to users, and the final database will be submitted to 
WIPP records to be stored in the CVS under the Sun platform/Solaris OS with all accompanying 
documentation.   
 

4 Special Considerations 
 
No special considerations are needed for this analysis plan. 
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5 Applicable Procedures 
 
All applicable WIPP QA procedures will be followed when conducting this AP. 

 Training of personnel will be conducted in accordance with the requirements of 
NP 2-1, Qualification and Training. 

 Analyses will be conducted and documented in accordance with the requirements of 
NP 9-1, Analyses. 

 All software used will meet the requirements laid out in NP 19-1, Software 
Requirements and NP 9-1, as applicable. 

 The analyses will be reviewed following NP 6-1, Document Review Process. 
 All required records will be submitted to the WIPP Records Center in accordance with 

NP 17-1, Records. 
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